Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 14.936
1.
Pak J Pharm Sci ; 37(1(Special)): 223-229, 2024 Jan.
Article En | MEDLINE | ID: mdl-38747273

In this study, the anti-osteogenic properties of the volatile oil extracted from Homalomena gigantea rhizome using ethyl acetate (EtOAc) and methanol (MeOH) were examined. Gas chromatography-mass spectrometry (GC-MS) was employed for the identification of volatile components. Following this, bioassays were performed to evaluate their effects on osteogenesis, encompassing parameters like cell viability, osteoblast differentiation, collagen synthesis and mineralization. The GC-MS analysis revealed 19 compounds in the EtOAc extract and 36 compounds in the MeOH extract. In the MeOH extract, major constituents included bis(2-ethylhexyl) terephthalate (13.83%), linalool (9.58%), palmitic acid (6.55%) and stearic acid (4.29%). The EtOAc extract contained bis(2-ethylhexyl) terephthalate (16.64%), palmitic acid (5.60%) and stearic acid (3.11%) as the predominant components. Both the EtOAc and MeOH extracts of H. gigantea exhibited promising potential for further investigation in anti-osteoporosis research. These findings contribute to the exploration of natural compounds with potential anti-osteoporotic properties, expanding our understanding of their therapeutic potential.


Gas Chromatography-Mass Spectrometry , Oils, Volatile , Osteogenesis , Plant Extracts , Rhizome , Osteogenesis/drug effects , Rhizome/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Oils, Volatile/isolation & purification , Animals , Cell Survival/drug effects , Osteoblasts/drug effects , Cell Differentiation/drug effects , Mice , Palmitic Acid/pharmacology , Acyclic Monoterpenes/pharmacology
2.
Pak J Pharm Sci ; 37(1): 147-154, 2024 Jan.
Article En | MEDLINE | ID: mdl-38741411

Zeravschania khorasanica, a species endemic to the eastern part of Iran, possesses distinct characteristics that distinguish it from its two closely related species. This research employed five different extraction techniques to identify the active components, total phenolic content and in vitro antioxidant activity of the extract. Furthermore, hydro-distillation was utilized for GC/MS analysis to determine the composition of the essential oil. The total phenolic content was estimated using the Folin-Ciocalteu assay and the antioxidant capacity was evaluated using the DPPH radical scavenging test. The findings revealed that ethanolic Soxhlet extraction yielded the highest efficiency in extracting total phenolic content (88.19 ±1.99 gallic acid mg/100g). In contrast, water maceration extraction demonstrated the highest antioxidant activity (68.1 ±5.4%). Interestingly, the study uncovered that there is no significant positive correlation between the phenolic content and the antioxidant activity of the plant. Additionally, HPLC analysis identified three phenolic constituents in the extract. The Soxhlet extraction method yielded the highest levels of chlorogenic acid (5.8 ppm), caffeic acid (4.1 ppm) and salicylic acid (10.3 ppm). As per the GC/MS analysis, a total of eleven compounds were identified. The predominant compounds were elemicin at 58.19% and trans--bergamotene at 25.78%.


Antioxidants , Apiaceae , Gas Chromatography-Mass Spectrometry , Phenols , Plant Extracts , Solvents , Antioxidants/isolation & purification , Antioxidants/analysis , Antioxidants/pharmacology , Antioxidants/chemistry , Phenols/analysis , Phenols/isolation & purification , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Iran , Solvents/chemistry , Apiaceae/chemistry , Chromatography, High Pressure Liquid , Oils, Volatile/chemistry , Oils, Volatile/isolation & purification , Oils, Volatile/pharmacology , Biphenyl Compounds/chemistry , Picrates/chemistry , Caffeic Acids/isolation & purification , Caffeic Acids/analysis
3.
Artif Cells Nanomed Biotechnol ; 52(1): 261-269, 2024 Dec.
Article En | MEDLINE | ID: mdl-38696143

The widespread dissemination of bacterial resistance has led to great attention being paid to finding substitutes for traditionally used antibiotics. Plants are rich in various phytochemicals that could be used as antibacterial therapies. Here, we elucidate the phytochemical profile of Euphorbia canariensis ethanol extract (EMEE) and then elucidate the antibacterial potential of ECEE against Pseudomonas aeruginosa clinical isolates. ECEE showed minimum inhibitory concentrations ranging from 128 to 512 µg/mL. The impact of ECEE on the biofilm-forming ability of the tested isolates was elucidated using crystal violet assay and qRT-PCR to study its effect on the gene expression level. ECEE exhibited antibiofilm potential, which resulted in a downregulation of the expression of the biofilm genes (algD, pelF, and pslD) in 39.13% of the tested isolates. The antibacterial potential of ECEE was studied in vivo using a lung infection model in mice. A remarkable improvement was observed in the ECEE-treated group, as revealed by the histological and immunohistochemical studies. Also, ELISA showed a noticeable decrease in the oxidative stress markers (nitric oxide and malondialdehyde). The gene expression of the proinflammatory marker (interleukin-6) was downregulated, while the anti-inflammatory biomarker was upregulated (interleukin-10). Thus, clinical trials should be performed soon to explore the potential antibacterial activity of ECEE, which could help in our battle against resistant pathogenic bacteria.


Anti-Bacterial Agents , Euphorbia , Plant Extracts , Pseudomonas aeruginosa , Respiratory Tract Infections , Pseudomonas aeruginosa/drug effects , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Euphorbia/chemistry , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Respiratory Tract Infections/drug therapy , Animals , Mice , Oxidative Stress/drug effects , Bacterial Load/drug effects , Gene Expression Regulation, Bacterial/drug effects
4.
Food Chem ; 449: 139243, 2024 Aug 15.
Article En | MEDLINE | ID: mdl-38608605

Linusorbs (LO), cyclolinopeptides, are a group of cyclic hydrophobic peptides and considered a valuable by-product of flaxseed oil due to numerous health benefits. Currently applied acetone or methanol extraction could contaminate the feedstocks for further food-grade application. Using flaxseed cake as feedstock, this study established a practical method for preparing LO from pressed cake. Firstly, LO composition of 15 flaxseed cultivars was analyzed. Next, cold-pressed cake was milled and screened mechanically. The kernel and hull fractions were separated based on the disparity of their mechanical strength. Monitored by hyperspectral fluorescence, the LO-enriched kernel fraction separated from cold-pressed flaxseed cake was further used as feedstock for LO production. After ethanol extraction, partition, and precipitation, LOs were extracted from cold-pressed flaxseed cake with a purity of 91.4%. The proposed method could serve as feasible flaxseed cake valorization strategy and enable the preparation of other polar compounds such as flax lignan and mucilage.


Flax , Peptides, Cyclic , Seeds , Flax/chemistry , Seeds/chemistry , Peptides, Cyclic/chemistry , Peptides, Cyclic/isolation & purification , Peptides, Cyclic/analysis , Food Handling , Plant Extracts/chemistry , Plant Extracts/isolation & purification
5.
Chem Biodivers ; 21(5): e202400228, 2024 May.
Article En | MEDLINE | ID: mdl-38613448

Marrubium vulgare L. (Lamiaceae) has a long history of use in traditional herbal medicine for the treatment of respiratory tract infections, inflammatory conditions, and pain. This study aimed to investigate the chemical composition, acute toxicity, and antinociceptive effects of the aqueous extract from M. vulgare leaves (AEMV). Antioxidant activity was evaluated using DPPH and reducing power assays. The chemical composition of AEMV was determined through LC-MS/MS, and the levels of total phenolics, flavonoids, and condensed tannins were quantified. Acute oral toxicity was assessed in male Swiss mice with a single oral dose of AEMV (1, 2, 5 g/kg). The analgesic impact was examined through writhing, hot plate, and formalin tests. Our findings not only confirmed the safety of the extract in animal models but also revealed significant antioxidant activity in AEMV. High-performance liquid chromatography (HPLC) analysis identified important bioactive compounds, with marrubiin being a major component. Furthermore, AEMV demonstrated robust antinociceptive properties in all conducted tests, highlighting its potential as a valuable natural source of bioactive compounds suitable for a wide range of therapeutic applications.


Analgesics , Antioxidants , Marrubium , Plant Extracts , Animals , Analgesics/pharmacology , Analgesics/chemistry , Analgesics/isolation & purification , Mice , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/isolation & purification , Male , Marrubium/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/isolation & purification , Plant Leaves/chemistry , Pain/drug therapy , Pain/chemically induced , Biphenyl Compounds/antagonists & inhibitors , Water/chemistry , Chromatography, High Pressure Liquid , Picrates/antagonists & inhibitors , Dose-Response Relationship, Drug
6.
Sci Rep ; 14(1): 9182, 2024 04 22.
Article En | MEDLINE | ID: mdl-38649422

In order to obtain high yield pomelo peel pectin with better physicochemical properties, four pectin extraction methods, including hot acid extraction (HAE), microwave-assisted extraction (MAE), ultrasound-assisted extraction, and enzymatic assisted extraction (EAE) were compared. MAE led to the highest pectin yield (20.43%), and the lowest pectin recovery was found for EAE (11.94%). The physicochemical properties of pomelo peel pectin obtained by different methods were also significantly different. Pectin samples obtained by MAE had the highest methoxyl content (8.35%), galacturonic acid content (71.36%), and showed a higher apparent viscosity, thermal and emulsion stability. The pectin extracted by EAE showed the highest total phenolic content (12.86%) and lowest particle size (843.69 nm), showing higher DPPH and ABTS scavenging activities than other extract methods. The pectin extracted by HAE had the highest particle size (966.12 nm) and degree of esterification (55.67%). However, Fourier-transform infrared spectroscopy showed that no significant difference occurred among the different methods in the chemical structure of the extracted pectin. This study provides a theoretical basis for the industrial production of pomelo peel pectin.


Citrus , Hexuronic Acids , Pectins , Pectins/chemistry , Pectins/isolation & purification , Citrus/chemistry , Viscosity , Particle Size , Microwaves , Spectroscopy, Fourier Transform Infrared , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Chemical Fractionation/methods , Chemical Phenomena , Fruit/chemistry , Antioxidants/chemistry , Antioxidants/isolation & purification , Antioxidants/pharmacology , Phenols/analysis , Phenols/chemistry , Phenols/isolation & purification , Esterification
7.
Food Chem ; 449: 139233, 2024 Aug 15.
Article En | MEDLINE | ID: mdl-38593725

This investigation was focused on the impact of cold plasma (CP) on the extraction of curcumin and bioactive compounds of turmeric powder (TP). TP was treated with CP at different applied voltages (10, 20, and 30 kV), with various exposure times (10, 20, and 30 min). The curcumin content was highest at 30 kV for 10 min with a yield of 46.49 mg/g of TP. Total phenols significantly (p < 0.05) enhanced from 163.91 to 360.78 mg GAE/g DW accompanied by a remarkable 16% increment in total flavonoids, paralleled by a 26% increment in antioxidants as of control. Nuclear magnetic resonance spectra justified the extraction of curcuminoids. Moreover, micrographs displayed cell lysis in the treated powder. CP has exhibited a positive effect on surface colour parameters and thermal properties of TP. Overall, CP technology can be tailored for better curcumin extraction and the enhancement of phytochemicals.


Antioxidants , Curcuma , Curcumin , Phytochemicals , Plant Extracts , Plasma Gases , Powders , Curcuma/chemistry , Curcumin/chemistry , Curcumin/pharmacology , Antioxidants/chemistry , Antioxidants/isolation & purification , Plasma Gases/chemistry , Plasma Gases/pharmacology , Phytochemicals/chemistry , Phytochemicals/isolation & purification , Phytochemicals/pharmacology , Powders/chemistry , Plant Extracts/chemistry , Plant Extracts/isolation & purification
8.
Chem Biodivers ; 21(5): e202302111, 2024 May.
Article En | MEDLINE | ID: mdl-38453650

Phytochemical studies on 95 % ethanol extract of the heartwood of Solanum verbascifolium L. resulted in the isolation of one new amide derivative (1), and 21 known phenylpropanoids compounds. The structures were characterized by spectral analysis and high-resolution mass spectrometric analysis. The anti-inflammatory activity of amide compounds 1-4 and 6-9 by investigating their impact on the release of nitric oxide (NO) in MH-S cells. Our findings unveiled significant inhibitory effects on NO secretion. Compound 1 exhibited robust dose-dependent suppression, with pronounced inhibition observed at both 20 µM (P<0.01) and 40 µM (P<0.01). Furthermore, compound 9 demonstrated noteworthy inhibitory effects at 40 µM (P<0.01). Similarly, compounds 3 and 4 displayed substantial inhibition of NO secretion at the same concentration, although the significance level was slightly lower (P<0.05). It is expected that there is a substantial association between the anti-inflammatory activities of amides and their targets, specifically PTGS2, by combining network pharmacology and molecular docking techniques. This discovery emphasizes amides' potential as an interesting subject for additional study in the realm of anti-inflammatory medications.


Anti-Inflammatory Agents , Molecular Docking Simulation , Nitric Oxide , Solanum , Solanum/chemistry , Nitric Oxide/antagonists & inhibitors , Nitric Oxide/metabolism , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Cyclooxygenase 2/metabolism , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/isolation & purification , Network Pharmacology , Amides/chemistry , Amides/pharmacology , Amides/isolation & purification , Mice , Dose-Response Relationship, Drug , Molecular Structure , Structure-Activity Relationship , Cell Line , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/isolation & purification
9.
Chem Biodivers ; 21(5): e202301959, 2024 May.
Article En | MEDLINE | ID: mdl-38469951

This study aimed to explore the potential protective impacts of Moringa oleifera extract on major alteration in salivary glands of rats exposed to sodium valproate (VA). Groups were defined as control, control+moringa extract, sodium valproate, and sodium valproate+moringa extract. Antioxidant and oxidant status, activities of digestive and metabolic enzymes were examined. VA treatment led to various biochemical changes in the salivary glands, including decreased levels of antioxidants like glutathione, glutathione-S-transferase, and superoxide dismutase (except for sublingual superoxide dismutase). Conversely, a decrease in alpha-amylase, alkaline and acid phosphatase, lactate dehydrogenase, protease, and maltase activities were observed. The study also demonstrated that VA induces oxidative stress, increases lipid peroxidation, sialic acid, and nitric oxide levels in the salivary glands. Total oxidant capacity was raised in all glands except in the sublingual gland. The electrophoretic patterns of proteins were similar. Moringa oleifera extract exhibited protective properties, reversing these VA-induced biochemical changes due to its antioxidant and therapeutic attributes. This research suggests that moringa extract might serve as an alternative treatment approach for individuals using VA and experiencing salivary gland issues, although further research is necessary to confirm these findings in human subjects.


Antioxidants , Moringa oleifera , Plant Extracts , Salivary Glands , Valproic Acid , Moringa oleifera/chemistry , Animals , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Rats , Salivary Glands/drug effects , Salivary Glands/metabolism , Valproic Acid/pharmacology , Antioxidants/pharmacology , Antioxidants/chemistry , Male , Oxidative Stress/drug effects , Rats, Wistar , Lipid Peroxidation/drug effects
10.
Chem Biodivers ; 21(5): e202400337, 2024 May.
Article En | MEDLINE | ID: mdl-38470409

Rice sheath blight (RSB), caused by Rhizoctonia solani, is a significant disease of rice. The negative effects of chemical fungicides have created an urgent need for low-toxicity botanical fungicides. Our previous research revealed that the ethanol crude extract of Moutan Cortex (MC) exhibited superior antifungal activity against R. solani at 1000 µg/mL, resulting in a 100 % inhibition rate. The antifungal properties were mainly found in the petroleum ether extract. However, the active ingredients of the extract are still unclear. In this study, gas chromatography-mass spectrometry (GC-MS) was utilised for the analysis of its chemical components. The mycelium growth rate method was utilized to detect the antifungal activity. The findings indicated that paeonol constituted the primary active component, with a content of more than 96 %. Meanwhile, paeonol was the most significant antifungal active ingredient, the antifungal activity of paeonol (EC50=44.83 µg/mL) was much higher than that of ß-sitosterol and ethyl propionate against R. solani. Observation under an optical microscope revealed that paeonol resulted in abnormal mycelial morphology. This study provided theoretical support for identifying monomer antifungal compounds and developing biological fungicides for R. solani.


Antifungal Agents , Microbial Sensitivity Tests , Paeonia , Rhizoctonia , Rhizoctonia/drug effects , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/isolation & purification , Paeonia/chemistry , Acetophenones/pharmacology , Acetophenones/chemistry , Acetophenones/isolation & purification , Gas Chromatography-Mass Spectrometry , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/isolation & purification , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Dose-Response Relationship, Drug
11.
Chem Biodivers ; 21(5): e202301467, 2024 May.
Article En | MEDLINE | ID: mdl-38471006

Cervical cancer is a specific type of cancer that affects women around the world, with an incidence of 604 thousand new cases per year and 341 thousand deaths. There is a high demand for new effective antineoplastic drugs with few side effects. In this sense, recent research highlights the potential of compounds of natural origin in treating and preventing different types of cancer. Myrciaria glazioviana is a Brazilian native species belonging to the Myrtaceae family, which has previously described biological activities such as antimicrobial, anti-inflammatory, and antioxidant properties. This study aims to evaluate the anticancer activity of the dichloromethane extract (MGD) and ethyl acetate extract (MGA) of M. glazioviana leaves against human cervical cancer cell line (HeLa), as well as to identify their bioactive compounds. Using HPLC-HRESIMS technique, ten compounds were characterized in both samples: quinic acid, ellagic acid, Tri-O-methyl ellagic acid, two derivatives of Tetra-O-methyl flavellagic acid, quercetrin, Di-O-methyl ellagic acid, and three derivatives of pentamethyl coruleoellagic acid. Through MTT assays using HeLa cells and NIH/3T3 cells, it was observed that MGD and MGA were selective against tumor cells, with IC50 values of 24.31 and 12.62 µg/mL, respectively. The samples induced the tumor cell death by apoptosis, as evidenced by the activation of caspases 3/7, cell shrinkage, and pyknotic nuclei. Both samples were also able to inhibit the migration of HeLa cells after 24 hours of treatment, indicating a potential antimetastatic effect. Therefore, the present research highlights the antiproliferative and antimigratory potential of this species against HeLa cells.


Antineoplastic Agents, Phytogenic , Apoptosis , Cell Proliferation , Drug Screening Assays, Antitumor , Myrtaceae , Plant Extracts , Uterine Cervical Neoplasms , Humans , HeLa Cells , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Cell Proliferation/drug effects , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/pathology , Myrtaceae/chemistry , Chromatography, High Pressure Liquid , Apoptosis/drug effects , Female , Dose-Response Relationship, Drug , Mice , Plant Leaves/chemistry , Animals , Cell Survival/drug effects , Spectrometry, Mass, Electrospray Ionization
12.
Chem Biodivers ; 21(5): e202301788, 2024 May.
Article En | MEDLINE | ID: mdl-38484132

Curcuma angustifolia Roxb. is a plant with medicinal potential, traditionally used to treat different diseases. The present study aimed to determine the antidiabetic activity of C. angustifolia rhizome in vitro and in silico. The methanolic extract of C. angustifolia rhizome was analyzed by FTIR and GC-MS to determine the phytochemicals present. The antidiabetic potential of the extract was evaluated by different assays in vitro. The extract inhibited both α-amylase and α-glucosidase enzymes and the glucose diffusion through the dialysis membrane in a concentration-dependent manner with IC50 values of 530.39±0.09, 293.75±0.11, and 551.74±0.3 µg/ml respectively. The methanolic extract also improved yeast cell's ability to take up glucose across plasma membranes and the adsorption of glucose. The findings were supported by molecular docking studies. The results showed that the methanol extract of C. angustifolia rhizome has significant antidiabetic activity and thus can be also studied to isolate the potential compound with antidiabetic activities.


Curcuma , Hypoglycemic Agents , Methanol , Molecular Docking Simulation , Plant Extracts , Rhizome , alpha-Amylases , alpha-Glucosidases , Curcuma/chemistry , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/isolation & purification , Rhizome/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/isolation & purification , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/metabolism , alpha-Glucosidases/metabolism , Methanol/chemistry , Phytochemicals/pharmacology , Phytochemicals/chemistry , Phytochemicals/isolation & purification , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/isolation & purification , Dose-Response Relationship, Drug , Glucose/metabolism
13.
Chem Biodivers ; 21(5): e202400033, 2024 May.
Article En | MEDLINE | ID: mdl-38488267

In this research, the extract of Ephedra intermedia Schrenk & C.A.Mey. was encapsulated using the mini-emulsion polymerization method based on methyl methacrylate polymers with a nanometer size. The encapsulated extract was characterized using different analytical techniques. Furthermore, the loading efficiency and release of the plant extract were examined. FT-IR spectroscopy confirmed the formation of an expectational product. The TEM and SEM imaging showed a spherical morphology for the prepared encapsulated extract. The average size of poly-methyl-methacrylate nanoparticles containing Ephedra extract was found to be approximately 47 nm. The extract loading efficiency and encapsulation efficiency test demonstrated a dose-depending behavior on E. intermedia extract for both analyses, which is highly advantageous for traversing biological barriers. The release assay shows a controlled release for the extract at phosphate buffer solution (PBS). A 38 % release was calculated after 36 hours. The results obtained from the present study reveal that encapsulating the plant extract is a suitable alternative to control and increase their medicinal properties.


Emulsions , Ephedra , Plant Extracts , Polymerization , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Emulsions/chemistry , Humans , Ephedra/chemistry , Particle Size , Methanol/chemistry , Nanoparticles/chemistry , Drug Liberation
14.
Chem Biodivers ; 21(5): e202400272, 2024 May.
Article En | MEDLINE | ID: mdl-38489001

Within a study focused on Sinapis pubescens subsp. pubescens wild from Sicily (Italy), an edible species still unexplored, our earlier published work has demonstrated good in vitro antioxidant properties for the flower and leaf hydroalcoholic extracts, exhibiting quite different qualitative-quantitative phenolic profiles. Herein, further research was designed to elucidate the role played by phenolic compounds in the different antioxidant mechanisms highlighted for the extracts. To achieve this goal, the crude extracts were subjected to liquid-liquid partitioning with solvents of increasing polarity; then, the fractions were investigated for their antioxidant properties using different in vitro assays. For both flowers and leaves, the ethyl acetate fractions exhibited the best activity in DPPH and reducing power assays, followed by n-butanol. The total phenolic content determination indicated these fractions as the phenolic-rich ones, which were characterized by HPLC-PDA/ESI-MS analysis. Conversely, the phenolic-rich fractions did not show any chelating activity, which was highlighted for the more hydrophobic ones.


Antioxidants , Biphenyl Compounds , Flowers , Phenols , Plant Extracts , Plant Leaves , Plant Leaves/chemistry , Phenols/chemistry , Phenols/isolation & purification , Phenols/pharmacology , Flowers/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/isolation & purification , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/isolation & purification , Biphenyl Compounds/antagonists & inhibitors , Brassicaceae/chemistry , Picrates/antagonists & inhibitors , Chromatography, High Pressure Liquid
15.
Chem Biodivers ; 21(5): e202400139, 2024 May.
Article En | MEDLINE | ID: mdl-38494875

Species of Onobrychis have been used to treat skin disorders such as wounds and cuts in folk medicine and Onobrychis argyrea subsp. argyrea (OA) commonly known as 'silvery sainfoin', is a member of this genus. In this study, it was aimed to investigate the skin-related biological activities and phytochemical characterization of OA. Moreover, an emulgel formulation was developed from the main methanolic extract of the plant (OAM). Initially, to identifiy of the active fractions, aerial parts of the plant material was extracted with methanol and fractionated by n-hexane, chloroform, ethyl acetate and n-butanol, respectively. Antioxidant activity was determined by CUPRAC, TOAC, FRAP and DPPH assays. Thereafter, the inhibition potential of OAM, novel formulation and all fractions was measured against elastase, collagenase, tyrosinase and hyaluronidase enzymes. OAM was analyzed and characterized by LC/MS-MS. The major bioactive flavonoids which are rutin and isoquercetin were measured and compared as qualitative and quantitative via high performance thin layer chromatography (HPTLC) analysis in OAM and fractions. The results showed that extracts of OA can be a potential cosmeceutical agent for skin related problems.


Antioxidants , Enzyme Inhibitors , Monophenol Monooxygenase , Phytochemicals , Plant Extracts , Skin , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/isolation & purification , Skin/drug effects , Phytochemicals/pharmacology , Phytochemicals/chemistry , Phytochemicals/isolation & purification , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/isolation & purification , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/isolation & purification , Monophenol Monooxygenase/antagonists & inhibitors , Monophenol Monooxygenase/metabolism , Pancreatic Elastase/antagonists & inhibitors , Pancreatic Elastase/metabolism , Collagenases/metabolism , Hyaluronoglucosaminidase/antagonists & inhibitors , Hyaluronoglucosaminidase/metabolism , Gels/chemistry , Humans
16.
Chem Biodivers ; 21(5): e202400414, 2024 May.
Article En | MEDLINE | ID: mdl-38500337

Three undescribed sesquiterpenes (1-3), two enantiomeric pairs of monoterpenes (4a/4b-5a/5b), one alkyne (6), two known alkynes (7-8) and eight known coumarins (9-16) were isolated from the aerial parts extracts of Artemisia scoparia. The structures of these compounds were fully elucidated by their 1D and 2D NMR, HRESIMS spectral data analyses, and comparison with literature. The absolute configurations of compounds were determined by single-crystal X-ray crystallography (1), a comparison of experimental and calculated electronic circular dichroism (ECD) data (2-6). 15 showed moderate inhibitory activity with the NO release in LPS-induced RAW264.7 cells. 9-16 showed varying degrees of promoting melanogenesis and tyrosinase activity in B16 cells.


Artemisia , Nitric Oxide , Artemisia/chemistry , Mice , Animals , RAW 264.7 Cells , Nitric Oxide/antagonists & inhibitors , Nitric Oxide/biosynthesis , Nitric Oxide/metabolism , Monophenol Monooxygenase/antagonists & inhibitors , Monophenol Monooxygenase/metabolism , Lipopolysaccharides/antagonists & inhibitors , Lipopolysaccharides/pharmacology , Crystallography, X-Ray , Plant Components, Aerial/chemistry , Sesquiterpenes/chemistry , Sesquiterpenes/pharmacology , Sesquiterpenes/isolation & purification , Molecular Structure , Monoterpenes/chemistry , Monoterpenes/isolation & purification , Monoterpenes/pharmacology , Coumarins/chemistry , Coumarins/pharmacology , Coumarins/isolation & purification , Molecular Conformation , Melanins/antagonists & inhibitors , Melanins/metabolism , Models, Molecular , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/isolation & purification
17.
Chem Biodivers ; 21(5): e202400547, 2024 May.
Article En | MEDLINE | ID: mdl-38507773

The hexane extract from twigs of Piper truncatum Vell (Piperaceae) displayed activity against Trypanosoma cruzi and was subjected to chromatographic steps to afford six dibenzylbutyrolactolic lignans, being four knowns: cubebin (1), (-)-9α-O-methylcubebin (2), (+)-9ß-O-methylcubebinin (3) and 3,4-dimethoxy-3,4-demethylenedioxycubebin (4) as well as two new, named truncatin A (5) and B (6). Initially, in vitro activity against trypomastigotes was evaluated and compounds 1, 4 and 6 exhibited EC50 values of 41.6, 21.0 and 39.6 µM, respectively. However, when tested against amastigotes, the relevant clinical form in the chronic phase of Chagas disease, compounds 1-6 displayed activities with EC50 values ranging from 1.6 to 13.7 µM. In addition, the mammalian cytotoxicity of compounds 1-6 was evaluated against murine fibroblasts (NCTC). Compounds 2, 3 and 4 exhibited reduced toxicity against NCTC cells (CC50>200 µM), resulting in SI values of>21.9,>14.5 and>121.9, respectively. Compound 4 showed the highest potency with an SI value twice superior to that determined by the standard drug benznidazole (SI>54.6) against the intracellular amastigotes. These data suggest that lignan 4 can be considered a possible scaffold for designing a new drug candidate for Chagas disease.


Lignans , Piper , Trypanocidal Agents , Trypanosoma cruzi , Lignans/pharmacology , Lignans/chemistry , Lignans/isolation & purification , Piper/chemistry , Animals , Trypanosoma cruzi/drug effects , Mice , Trypanocidal Agents/pharmacology , Trypanocidal Agents/chemistry , Trypanocidal Agents/isolation & purification , Structure-Activity Relationship , Parasitic Sensitivity Tests , Fibroblasts/drug effects , Molecular Structure , Dose-Response Relationship, Drug , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/isolation & purification , Cell Survival/drug effects
18.
Chem Biodivers ; 21(5): e202302075, 2024 May.
Article En | MEDLINE | ID: mdl-38527165

The present study investigated the role of a commercial formulation constituted by herbal extracts from Rhodiola rosea, Undaria pinnatifida, Tribulus terrestris, and Moringa oleifera. The formulation was analysed for determining the content in total phenols and flavonoids and scavenging/reducing properties. The formulation was also tested on isolated mouse hypothalamus in order to investigate effects on serotonin, dopamine, neuropeptide Y (NPY), and orexin A. The gene expression of gonadrotopin releasing hormone (GnRH) was also assayed. The formulation was able to reduce dopamine and serotonin turnover, and this could be related, albeit partially, to the capability of different phytochemicals, among which hyperoside and catechin to inhibit monoaminooxidases activity. In parallel, the formulation was effective in reducing the gene expression of NPY and orexin-A and to improve the gene expression of GnRH. In this context, the increased GnRH gene expression induced by the formulation may contribute not only to improve the resistance towards the stress related to ageing, but also to prevent the reduction of libido that could be related with a stimulation of the serotoninergic pathway. According to the in silico analysis, hyperoside could play a pivotal role in modulating the gene expression of GnRH. Regarding NPY and orexin A gene expression, no direct interactions between the formulation phytochemicals and these neuropeptides were anticipated; thus, suggesting that the pattern of gene expression observed following exposure of the hypothalamus to the formulation may be secondary to inhibitory effects of dopamine and serotonin turnover. Concluding, the present study demonstrated the efficacy of the formulation in exerting neuromodulatory effects at the hypothalamic level; thus, suggesting the potential to contrast stress and fatigue.


Hypothalamus , Moringa oleifera , Plant Extracts , Rhodiola , Tribulus , Animals , Hypothalamus/metabolism , Hypothalamus/drug effects , Mice , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Tribulus/chemistry , Moringa oleifera/chemistry , Rhodiola/chemistry , Serotonin/metabolism , Molecular Docking Simulation , Male , Dopamine/metabolism , Neurotransmitter Agents/metabolism
19.
Phytochemistry ; 222: 114068, 2024 Jun.
Article En | MEDLINE | ID: mdl-38554895

Seven undescribed polyoxygenated ursane-type triterpenoids (vitnegundins A-G), three undescribed triterpenoid saponins (vitnegundins H-J), and 17 known ones were isolated from an EtOH extract of the aerial parts of Vitex negundo L. The structures of the undescribed compounds were established by extensive spectroscopic analysis. The absolute configurations of vitnegundins A, B, and E were determined by single-crystal X-ray diffraction data. Vitnegundins B-D are pentacyclic triterpenoids possessing rare cis-fused C/D rings and vitnegundins C-H represent undescribed ursane-type triterpenoids with 12,19-epoxy moiety. In the biological activity assay, vitnegundin A, vitnegundin E, and swinhoeic acid displayed inhibitory effects against LPS-induced NO release in BV-2 microglial cells, with IC50 values of 11.8, 44.2, and 19.6 µM, respectively.


Anti-Inflammatory Agents , Plant Extracts , Saponins , Triterpenes , Vitex , Vitex/chemistry , Triterpenes/chemistry , Triterpenes/isolation & purification , Triterpenes/pharmacology , Saponins/chemistry , Saponins/isolation & purification , Saponins/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Anti-Inflammatory Agents/pharmacology , Ethanol/chemistry , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , X-Ray Diffraction , Inhibitory Concentration 50 , Microglia/drug effects , Cell Line
20.
Chem Biodivers ; 21(5): e202400245, 2024 May.
Article En | MEDLINE | ID: mdl-38436134

Despite Aloe's traditional use, Aloe juvenna Brandham & S.Carter is poorly characterized. Other Aloes are known for their antidiabetic activity. This study describes the antidiabetic potentials and phytoconstituents of the A. juvenna leaves methanolic extract (AJME). Twenty-six phytoconstituents of AJME were described using HPLC/MS-MS. Lupeol and vitexin were isolated using column chromatography. The antidiabetic activity of AJME was investigated using an in vivo high-fat diet/streptozotocin-induced diabetic rat model and in vitro α-glucosidase and α-amylase inhibitory activity assays. AJME demonstrated its α-amylase inhibitory activity (IC50=313±39.9 ppm) with no effect on α-glucosidase. In vivo, AJME dose-dependently improved hyperglycaemia in a high-fat diet/streptozotocin-induced diabetic rat model. Notably, the higher dose (1600 mg/kg) of AJME significantly downregulated serum interleukin-6, tumor necrosis factor-α, and matrix metalloproteinase-1 genes, suggesting its anti-inflammatory effect. These findings indicate AJME's potential as a significant antidiabetic agent through its α-amylase inhibition, hypoglycaemic, and anti-inflammatory properties.


Aloe , Anti-Inflammatory Agents , Diabetes Mellitus, Experimental , Hypoglycemic Agents , Plant Extracts , Plant Leaves , Streptozocin , alpha-Amylases , Animals , Aloe/chemistry , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/isolation & purification , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/chemically induced , Rats , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/isolation & purification , Plant Leaves/chemistry , Male , Diet, High-Fat , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/isolation & purification , Dose-Response Relationship, Drug , Rats, Sprague-Dawley
...